Wednesday, July 9, 2014

Chemistry in Medicine ,Basic concepts Mole-Ions and salts-Acidity and basicity-Phase-Redox-Chemical bond

Chemistry in Medicine ,Basic concepts Mole-Ions and salts-Acidity and basicity-Phase-Redox-Chemical bond
Mole
A mole is the amount of a substance that contains as many elementary entities (atoms, molecules or ions) as there are atoms in 0.012 kilogram (or 12 grams) of carbon-12, where the carbon-12 atoms are unbound, at rest and in their ground state.[36] This number is known as the Avogadro constant, and is determined empirically. The currently accepted value is 6.02214179(30) × 1023 mol-1 (2007 CODATA). The best way to understand the meaning of the term "mole" is to compare it to terms such as dozen. Just as one dozen is equal to 12, one mole is equal to 6.02214179(30) × 1023. The term is used because it is much easier to say, for example, 1 mole of carbon atoms, than it is to say 6.02214179(30) × 1023 carbon atoms. Likewise, we can describe the number of entities as a multiple or fraction of 1 mole, e.g. 2 mole or 0.5 moles. Mole is an absolute number (having no units) and can describe any type of elementary object, although the mole's use is usually limited to measurement of subatomic, atomic, and molecular structures.The number of moles of a substance in one liter of a solution is known as its molarity. Molarity is the common unit used to express the concentration of a solution in physical chemistry.
Ions and salts
An ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. Positively charged cations (e.g. sodium cation Na+) and negatively charged anions (e.g. chloride Cl-) can form a crystalline lattice of neutral salts (e.g. sodium chloride NaCl). Examples of polyatomic ions that do not split up during acid-base reactions are hydroxide (OH-) and phosphate (PO43-).
Ions in the gaseous phase is often known as plasma.
Acidity and basicity
A substance can often be classified as an acid or a base. This is often done on the basis of a particular kind of reaction, namely the exchange of protons between chemical compounds. However, an extension to this mode of classification was brewed up by the American chemist, Gilbert Newton Lewis; in this mode of classification the reaction is not limited to those occurring in an aqueous solution, thus is no longer limited to solutions in water. According to concept as per Lewis, the crucial things being exchanged are charges[37]. There are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept
Phase
In addition to the specific chemical properties that distinguish different chemical classifications chemicals can exist in several phases. For the most part, the chemical classifications are independent of these bulk phase classifications; however, some more exotic phases are incompatible with certain chemical properties. A phase is a set of states of a chemical system that have similar bulk structural properties, over a range of conditions, such as pressure or temperature. Physical properties, such as density and refractive index tend to fall within values characteristic of the phase. The phase of matter is defined by the phase transition, which is when energy put into or taken out of the system goes into rearranging the structure of the system, instead of changing the bulk conditions.
Sometimes the distinction between phases can be continuous instead of having a discrete boundary, in this case the matter is considered to be in a supercritical state. When three states meet based on the conditions, it is known as a triple point and since this is invariant, it is a convenient way to define a set of conditions.
The most familiar examples of phases are solids, liquids, and gases. Many substances exhibit multiple solid phases. For example, there are three phases of solid iron (alpha, gamma, and delta) that vary based on temperature and pressure. A principal difference between solid phases is the crystal structure, or arrangement, of the atoms. Less familiar phases include plasmas, Bose-Einstein condensates and fermionic condensates and the paramagnetic and ferromagnetic phases of magnetic materials. While most familiar phases deal with three-dimensional systems, it is also possible to define analogs in two-dimensional systems, which has received attention for its relevance to systems in biology.
Redox
It is a concept related to the ability of atoms of various substances to lose or gain electrons. Substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. An oxidant removes electrons from another substance. Similarly, substances that have the ability to reduce other substances are said to be reductive and are known as reducing agents, reductants, or reducers. A reductant transfers electrons to another substance, and is thus oxidized itself. And because it "donates" electrons it is also called an electron donor. Oxidation and reduction properly refer to a change in oxidation number—the actual transfer of electrons may never occur. Thus, oxidation is better defined as an increase in oxidation number, and reduction as a decrease in oxidation number.
Chemical bond
Electron atomic and molecular orbitals
A chemical bond is a concept for understanding how atoms stick together in molecules. It may be visualized as the multipole balance between the positive charges in the nuclei and the negative charges oscillating about them.[39] More than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. These potentials create the interactions which hold atoms together in molecules or crystals. In many simple compounds, Valence Bond Theory, the Valence Shell Electron Pair Repulsion model (VSEPR), and the concept of oxidation number can be used to predict molecular structure and composition. Similarly, theories from classical physics can be used to predict many ionic structures. With more complicated compounds, such as metal complexes, valence bond theory fails and alternative approaches, primarily based on principles of quantum chemistry such as the molecular orbital theory, are necessary. See diagram on electronic orbitals.

1 comment:

  1. Thanks for posting this info. I just want to let you know that I just check out your site and I find it very interesting and informative. I can't wait to read lots of your posts.
    tks thermal oxidizer

    ReplyDelete